高数基础(二)导数与微分
一、导数与微分的概念
1、导数的概念
【注】f’(x_0)与f(x_0)有关
例题1
例题2
2、微分的概念
例题3
3、导数与微分的几何意义
例题4
4、连续、可导、可微之间的关系
【注】n阶可导,用洛必达法则,最多可以用到出现n-1阶可导;n阶连续可导,用洛必达法则,最多可以用到出现n阶可导。如:二阶可导,用洛必达法则,最多可以用到出现一阶可导,不能出现二阶可导
例题5
二、导数公式及求导法则
1、基本初等函数的导数公式
2、求导法则
例题7~8
3、隐函数求导法
4、反函数的导数
5、参数方程求导法
例题11
6、对数求导法
例题13
总结
三、高阶导数
1、高阶导数的概念
2、常用的高阶导数公式
例题14~15
常考题型与典型例题
1、导数定义
2、复合函数、隐函数、参数方程求导
3、高阶导数
4、导数应用
例题16
例题17
例题18
例题19
例题20
例题21
例题22
例题23
例题24
例题25
例题26
例题27
例题28
例题29
内容取自武忠祥老师基础班教程,参考书《高等数学·基础篇》
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 LUCKY!